
Rebecca Gamache / University of Texas at Austin
The traditional paradigm for materials research focuses on behavior in or near equilibrium. Through two Interdisciplinary Research Groups (IRGs), the Center for Dynamics and Control of Materials extends this paradigm to understand and control how materials behave over times ranging from femtoseconds to weeks, and over dimensions extending from macroscopic to atomic scales.

IRG 1, Reconfigurable Porous Nanoparticle Networks, addresses multifunctional, reconfigurable networks of nanoparticles, polymers, and organic molecules that respond to a range of external stimuli. Fundamental principles are elucidated for understanding and controlling the assembly and reconfiguration of nanoparticles connected by molecular linkers, with theoretical and experimental efforts combining to create unique optical, chemical, or biological materials functionality. Research advances in this IRG are expected to enable responsive, reconfigurable materials based on integration of nanoparticles and macromolecules for applications in electronics, energy storage, photonics, and biology. Learn more
IRG 2, Materials Driven by Light, addresses light-matter interactions that lead to material properties not accessible in equilibrium. Phases and ordered states accessed via light-induced perturbations to energy landscapes, topological material behavior enabled by optical excitation, and formation of exotic quantum phases are explored to provide new understanding of and control over optically responsive materials. Research advances in this IRG are expected to lead to new understanding of material behavior accessible and controllable using temporally structured light, with potential applications in a broad range of technologies for communications and information processing. Learn more